Search results for "Quantum computation architectures and implementations"

showing 3 items of 3 documents

Two-qubit entanglement dynamics for two different non-Markovian environments

2009

We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-$Q$ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.

03.67.Mn Entanglement measures witnesses and other characterizationCondensed Matter::Quantum GasesPhysicsQuantum Physicsbusiness.industryDynamics (mechanics)FOS: Physical sciencesMarkov process03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.)Quantum PhysicsTrappingQuantum entanglementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiasymbols.namesake03.67.Mn Entanglement measures witnesses and other characterizations; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.); 03.67.Lx Quantum computation architectures and implementationsQuantum mechanicsQubitsymbolsPhotonicsQuantum Physics (quant-ph)business03.67.Lx Quantum computation architectures and implementationsMathematical Physics
researchProduct

Entanglement dynamics in superconducting qubits affected by local bistable impurities

2012

We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …

BistabilityDephasingCrossoverquantum statistical methodEntanglement measures witnesses and other characterizations Decoherence; open systems; quantum statistical methods; Quantum computation architectures and implementationsFOS: Physical sciencesQuantum computation architectures and implementationsQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasComputer Science::Emerging TechnologiesQuantum mechanics0103 physical sciencesExponential decay010306 general physicsMathematical PhysicsEntanglement measures witnesses and other characterizations DecoherencePhysicsQuantum PhysicsQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsAmplitudeQubitopen systemQuantum Physics (quant-ph)
researchProduct

Dynamics of correlations due to a phase noisy laser

2012

We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovia…

Physics03.67.Mn Entanglement measures witnesses and other characterizationQuantum discordQuantum PhysicsPhase (waves)Markov processFOS: Physical sciencesQuantum entanglement03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.)Condensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiasymbols.namesake02.50.Ga Markov processeQubit42.50.Dv Quantum state engineering and measurementsymbolsStatistical physicsExponential decayQuantum Physics (quant-ph)QuantumMathematical PhysicsLight field03.67.Lx Quantum computation architectures and implementations03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.); 42.50.Dv Quantum state engineering and measurements; 03.67.Mn Entanglement measures witnesses and other characterizations; 02.50.Ga Markov processes; 03.67.Lx Quantum computation architectures and implementations
researchProduct